音箱箱体尺寸与数学上的黄金切割率

  • A+
所属分类:音箱设计

表示黄金切割率的数(也称为黄金平均值,黄金比例和黄金分割)是从划分线段得出的。此时较短的部分对较长的部分之比等于较长的部分对线段总长之比值。设线段总长度为1,且取较长部分为x,那么较短的部分就是1-x,这样导出的比率就是:

[(1-x)/x]=(x/1)或 x2=1-x (1)

稍经排列,可给出一元二次方程:x2+x-1=0 (2)

将此式与二次方程基本形式比较,可得ax2+bx+c=0,且应用该公式,x=(-b )/2a x的正值(较长的线段)可得0.61803…,作为实际应用四舍五入为0.618。通过相减,较短部分的长度即为0.382,正如方程(1)直接显示那样,该值是较长线段的平方。

yinxiang

你还可以(在理论上)找到一个通过几何结构分割而得到的正确的分割点。假设在图纸上,ABC是一个直角三角形,为方便起见,选择AB为2单元,而BC(垂直于AB)选定为1,根据勾股定律,AC=。以C为圆心,半径=BC=1作圆弧,交于斜边上D点,得AD=-1。再以A为圆心,AD为半径作圆弧,交AB于G点,该点即为分割AB的黄金比率。较长部分AG=-1,而较短的部分GB=2-(-1)=3-。应用这些值,我们能够看出
GB/AG=AG/AB是相同的。

黄金比值也能从其它数学运算中得到。例如,有一种费班纳赛序列(FIBONACCI SERIES),这种数制序列中每个数等于前面两个数的和):1,2,3,5,8,13,21,34,55,89,144,233,377,等等。稍作验算,数序怎样建立就清楚了,取连续的一对数的比率看其结果:

1:1=1;1:2=.5;2:3=.67…;3:5=.6;5:8=.625;8:13=.61538…;13:21=.61904…21:34=.61764…;34:55=.61818…;等等。

黄金比率在许多方面都有出现,例如,正五边形对角线的线段,在测量五个正几何立体金字塔的一定比率,而最显著的是在自然界中,假如读者能获得一个大的成熟的向日葵,请注意花簇头部的顺时针和逆时针方向的螺旋纹,仔细数出两个方向的螺纹数,取较小的数和较大的数的比率,再和Fibonacci数序的比率比较。

显然,这是一个值得注意的比率,而且当引入到音箱箱体尺寸后,扬声器箱放音非常优良就没有什么奇怪了。

发表评论

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen: